代数基本定理(代数是几年级学的)
代数的基本定理是什么
代数的基本定理:
设K为一交换体.把K上的向量空间E叫做K上的代数,或叫K-代数,如果赋以从E×E到E中的双线性映射.换言之,赋以集合E由如下三个给定的法则所定义的代数结构:
1、记为加法的合成法则(x,y)↦x+y;
2、记为乘法的第二个合成法则(x,y)↦xy;
3、记为乘法的从K×E到E中的映射(α,x)↦αx,这是一个作用法则。
扩展资料:
代数的组成:
1、初等代数
在古代,当算术里积累了大量的,关于各种数量问题的解法后,为了寻求有系统的、更普遍的方法,以解决各种数量关系的问题,就产生了以解代数方程的原理为中心问题的初等代数。
初等代数(elementary algebra)是研究数字和文字的代数运算理论和方法,更确切的说,是研究实数和复数,以及以它们为系数的代数式的代数运算理论和方法的数学分支学科。
2、高等代数
高等代数在初等代数的基础上研究对象进一步的扩充,引进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等。这些量具有和数相类似的运算的特点,不过研究的方法和运算的方法都更加繁复。
参考资料来源:百度百科—代数
代数基本定理的介绍
代数学基本定理:任何复系数一元n次多项式方程在复数域上至少有一根(n≥1),由此推出,n次复系数多项式方程在复数域内有且只有n个根(重根按重数计算)。代数基本定理在代数乃至整个数学中起着基础作用。据说,关于代数学基本定理的证明,现有200多种证法。
代数基本定理的证明方法
所有的证明都包含了一些数学分析,至少是实数或复数函数的连续性概念。有些证明也用到了可微函数,甚至是解析函数。
定理的某些证明仅仅证明了任何实系数多项式都有复数根。这足以推出定理的一般形式,这是因为,给定复系数多项式p(z),以下的多项式
就是一个实系数多项式,如果z是q(z)的根,那么z或它的共轭复数就是p(z)的根。
许多非代数证明都用到了“增长引理”:当|z|足够大时,首系数为1的n次多项式函数p(z)的表现如同z。一个更确切的表述是:存在某个正实数R,使得当|z|> R时,就有:证明一
寻找一个中心为原点,半径为r的闭圆盘D,使得当|z|≥ r时,就有|p(z)|>|p(0)|。因此,|p(z)|在D内的最小值(一定存在,因为D是紧致的),是在D的内部的某个点z0取得,但不能在边界上取得。于是,根据最小模原理,p(z0)= 0。也就是说,z0是p(z)的一个零点(根)。
证明二
由于在D之外,有|p(z)|>|p(0)|,因此在整个复平面上,|p(z)|的最小值在z0取得。如果|p(z0)|> 0,那么1/p在整个复平面上是有界的全纯函数,这是因为对于每一个复数z,都有|1/p(z)|≤|1/p(z0)|。利用刘维尔定理(有界的整函数一定是常数),可知1/p是常数,因此p是常数。于是得出矛盾,所以p(z0)= 0。
证明三
这个证明用到了辐角原理。设R为足够大的正实数,使得p(z)的每一个根的绝对值都小于R;这个数一定存在,因为n次多项式函数最多有n个根。对于每一个r> R,考虑以下的数:
其中c(r)是中心为0,半径为r的逆时针方向的圆;于是辐角原理表明,这个数是p(z)在中心为0、半径为r的开圆盘内的零点的数目N,由于r> R,所以它也是p(z)的零点的总数目。另一方面,n/z沿着c(r)的积分除以2πi,等于n。但这两个数的差为:
被积分的有理表达式中的分子,次数最多是n 1,而分母的次数是n+ 1。因此,当r趋于+∞时,以上的数趋于0。但这个数也等于N n,因此有N= n。
证明四
这个证明结合了线性代数和柯西积分定理。为了证明每一个n> 0次复系数多项式都有一个根,只需证明每一个方块矩阵都有一个复数特征值。证明用到了反证法。
设A为大小n> 0的方块矩阵,并设In为相同大小的单位矩阵。假设A没有特征值。考虑预解函数
它在复平面上是亚纯函数,它的值位于矩阵的向量空间内。A的特征值正好是R(z)的极点。根据假设,A没有特征值,因此函数R(z)是整函数,根据柯西积分定理可知:
另一方面,把R(z)展开为几何级数,可得:
这个公式在半径为||A||的闭圆盘的外部(A的算子范数)成立。设r>||A||。那么:
(仅当k= 0时,积分才不等于零)。于是得出矛盾,因此A一定有一个特征值。设z0∈ C为使|p(z)|在z0取得最小值的数;从用到刘维尔定理的证明中,可以看到这样一个数一定存在。我们可以把p(z)写成z z0的多项式:存在某个自然数k和一些复数,使得,以及:
可推出如果a是的一个k重根,且t是足够小的正数,那么|p(z0+ ta)|<|p(z0)|,这是不可能的,因为|p(z0)|是|p|在D内的最小值。
对于另外一个用到反证法的拓扑学证明,假设p(z)没有根。选择一个足够大的正数R,使得对于|z|= R,p(z)的第一项z大于所有其它的项的和;也就是说,|z|>|an 1z+···+ a0|。当z依逆时针方向绕过方程为|z|= R的圆一次时,p(z),像z那样,依逆时针方向绕过零n次。在另外一个极端,|z|= 0时,“曲线” p(z)仅仅是一个(非零的)点p(0),它的卷绕数显然是0。如果z所经过的回路在这两个极端中被连续变形,那么p(z)的路径也连续变形。我们可以把这个变形记为,其中t大于或等于0,而小于或等于1。如果我们把变量t视为时间,那么在时间为零时,曲线为p(z),时间为1时,曲线为p(0)。显然在每一个点t,根据原先的假设p(z)都不能是零,因此在变形的过程中,曲线一直都没有经过零。因此曲线关于0的绕数应该不变。然而,由于绕数在一开始是n,结束时是0,因此得出矛盾。所以,p(z)至少有一个根。这个证明需要依赖实数集的如下事实:正实数R在上有实平方根,以及任何奇次多项式在上有一个根(这可以用介值定理证明)。
首先。经过简单的计算可以证明在开平方运算下是封闭的(利用事实1)。结合。得出不存在二阶扩张。
由于,于是任何的扩张都是可分的,从而任何的代数扩张都可以被包含在一个伽罗瓦扩张内。假设是一个伽罗瓦扩张。考虑伽罗瓦群的西罗2-子群H。那么是奇数。由本原元定理得出,K存在本原元,它的极小多项式是奇次的。但是利用实数集的事实2,任何奇次数多项式在实数上有一个根,于是不存在奇次的且次数>1的不可约多项式。于是是2的幂次。
假设并且r>0,再次利用西罗定理,G存在一个阶为2的子群N。这时。这和先前不存在二阶扩张矛盾。因此的任何代数扩张都是本身,代数基本定理得证。
代数基本定理的证明
代数基本定理的证明如下:
代数拓扑方法:
视S2=C∪{}SymboleB@},f(z)可以延拓为一个连续映射:F:S2=C∪{SymboleB@}→S2=C∪{SymboleB@};
F(z)=f(z),z∈C;F(SymboleB@)=SymboleB@。
由此可知,只要证明0∈ImF即可。
伯努利在1702年的文章“关于积分学问题的解答”的开头得出一个结论:有理微积分总是可以约化为双曲线的求积(如果对数是实的)或圆的求积(如果对数是虚的)。
本文来源网络,未经允许,严禁转载